fnt. J. Sadids Structures Vol 29, No. . pp. 1339-135), 192 OOZ0-TeRI 9D $5.06 - OB
Printed 1n Great Botan. {4942 Pergamon Press pic

THE GROWTH OF MICROVOIDS UNDER INTENSE
DYNAMIC LOADING

Ravt CORTES
Department of Materials Science, E.T.S. Ingenieros de Caminos, Canales y Puertos.
Polytechnic University of Madrid. Ciudad Universitaria, 28040 Madrid, Spain

(Received 29 April 1991 ; in revised form 16 September 1991)

Abstract—This paper deals with the analytical study of the dynamic growth of microvoids. A
previous model by Carroll and Holt (1972). Static and dynamic pore-collapse relations for ductile
porous materials, J. Appl. Phys. 43, 1626-1636, for porous perfectly plastic materials under the
action of a purely hydrostatic stress is further developed to include the influence of material viscosity,
strain hardening and thermal softening in the tensile {ructure behaviour. The results of this analysis
are discussed with the help of a numerical study of the void growth relationships derived: the
conclusion is that both material viscosity and strain hardening may have an important influence on
the tensile strength of ductile materials at high strain rates. [t is also shown that, in the conditions
of the analysis, thermal softening by itself has a negligible intluence on the dynamic tensile strength
at high strain rates due to excessively localized heat generation near the surface of the voids.

L. INTRODUCTION

High tensile stresses may develop within a material as a result of the interaction of stress
waves, and dynamic failure in the form of an internal cavitation may take place. This type
of failure, termed spall fracture, may be either brittle or ductile. Brittle spall is controlled
by the evolution of microcracks in the material which propagate and finally coalesce to
generate the spall plane. The fracture may eventually be accompanied by a considerable
plastic deformation around the microcracks. On the other hand, ductile spall is controlled
by the dynamic evolution and coalescence of microvoids, accompanied by a large plastic
deformation of the material around the voids.

The evolution of material response during spall is a complex problem. It is recognized
that the presence of pre-existing heterogencities can lead to the opening of cracks or voids
and the initiation of the spall process. Experimental evidence suggests that there exists a
threshold tensile stress at which spall initiation takes place. However, a material can bear
tensile stresses considerably larger than such threshold stress without causing an important
fracture process. This is due to the inertia and the kinetics associated with the micro-
mechanisms controlling the spall type of fracture.

Several attempts have been made to define the phenomena controlling spall fracture.
It has been established that spall fracture is associated with the complicated concurrence
of nucleation, growth and coalescence of microdefects, which can depend on both the pre-
existing and the evolving microstructure. Based on experimental arrangements, such as that
of plate to plate impact, the detailed damage processes associated with spall have been
carefully studied, and statistical laws for the nucleation and growth of microcracks or
microvoids under given experimental conditions have been proposed. This latter approach
needs the experimental determination of several parameters, which is rather complicated in
practice. Review articles by Curran (1982), Curran es al. (1987) and Meyers and Aimone
(1983), explain in some detail the most relevant results of both experimental and theoretical
studies of spall fracture.

In the present paper we are concerned with the ductile type of spall fracture and our
approach differs from those mentioned above. In particular, we analyse in detail the plastic
void growth process which takes place under extremely high rates of loading. The basic
assumptions of this analysis are taken from a previous model for perfectly plastic porous
materials presented by Carroll and Holt (1972) for shrinking pores, and later extended by
Johnson (1981) to pore expansion. The voids are assumed to be spherical and to grow
plastically under the action of an externally applied macroscopic hydrostatic stress. The
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influence of material viscosity, strain hardening and thermul softening effects on the dynamic
void growth equation are ascertained. One of the advantages of using an analytical approach
is that the influence of different effects on the dynamic void growth can be isolated and
studied in greater depth. The influence of triaxiality in the void growth process is not
considered, since in the light of the works by Gurson (1977), Rice and Tracey (1969), Cocks
(19893 and others on static void growth, it becomes clear that the inclusion of triaxiality in
the void expansion analysis greatly complicates the problem. So, numerical techniques are
frequently emploved when triaxiality effects are important (Tvergaard. 1982, Koplik and
Needleman, 1988, Becker er al., 1989). Moreover. it is expected that under extremely high
loading rates. the hydrostatic stress will be the leading stress compoenent in the spall fracture
process.

2. RELATIONS FOR DYNAMIC VOID GROWTH UNDER HYDROSTATIC STRESSES

2.1 General equation

As a first step. a gencral relationship is derived between external hydrostatic stress and
material porosity. Such a relation allows us to discuss within the same reference frame the
growth of cavities when different yield criteria are considered. In the following sections, the
influence of strain-rate, plastic strain and temperature on yield strength are analysed.

Starting with the simple assumptions of Carroll and Holt (1972), a umiform and
homogeneous distribution of spherical voids s assumed. The process of hole growth can
be modelled following the evolution of a hollow sphere of inner radius @ {a,, nitial void
radius) and external radius b (radius of the zone of influcnce of cuch pore), subjected to
external stress g, as shown in Fig, L. Furthermore, the material is considered incompressible.

The relevant dynamic equilibrium cquation for the modcl is:

N
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where g, is the radial stress, o, the hoop stress and p the matenial density, r s an inner
radius between o and b, and ¢ s time. On integrating this equation, and after some
manipulation, the following expression for the dynamic growth of cavities under an external
stress @ at every instant ¢, is obtained (Carroll and Holt, 1972, Johnson, 1981):

,
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where A = o, —a,, R = r/uand Q is given by :
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Fig. 1. Graphical representation of the simplifications of the model. To the left the actual solid with

an wregular distribution of voids is shown. In the center, the actual void distribution is replaced by

a distribution of single-sized equally separated voids. To the right, the radius of influence sur-
rounding cach void is shown.
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]

Q.32 = d[(x=1)" " mx = =1 ] (3)

where dots indicate time differentiation and z. the distention factor of the material, is defined
as:

(4)

[t has been previously determined that the period of the sphere deformation process
while the material near the void is plastic and the farther material is still elastic is in practice
sufficiently brief to be ignored, Johnson (1981), and. in consequence, we can reasonably
assume that the hollow sphere will be at a fully plastic stage from the very beginning of the
deformation process. Hence, for a growing void we will have:

= —0, (5)

where the yield strength o, is determined by the particular constitutive equation of the
matertal. For a perfectly plastic material, for instance, where o, equals a constant value a,,
eqn {2} becomes :

X
20, & g

773 tn (1—‘1) = 3oy — 1) Q(4, 4, 2). 6)

This expression was previously derived by Carroll and Holt (1972) for the case of
shrinking pores.

2.2, Strain rate dependence of the yield stress
We now assume a dependence of the yield stress of the type:

g, = (T(](l -+ Bl’im) (7)

where the plastic strain rate € is defined by £° = 2¢,6,/3, the £, being the components of the
plastic strain rate tensor. Since we have a plastic deformation process with spherical
symmetry, the equivalent plastic strain is given by Johnson and Mellor (1973):

g=2m<i> (8)
T

and the corresponding strain rate is:
£=2-, C)]

Taking into account material incompressibility :

a2

(10)

r*=ri+a)
a()-l

and noting from the above expression that a*(x,— 1) = aj(z— 1), we finally get:
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and from (2). (3) and (7). one obtains the following relation for hole growth under
hydrostatic stress o

2o, [ 2 20,8 | .. n - _pan
---—i (14) I C2 G- —((x—1b 27 }(Xn_”wQ(i %, ).
(12)

Alternatively, if we assume a dependence of the yield stress of the type:

ac=m{§+ﬂm(:)} (13)

then the dynamic void growth equation (2) becomes:

2o, % 20,0 / 2x % fa, .
- . X (g — :
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2.3, Strain hardening dependence of the yvield stress
Strain hardening can be accounted for by means of a simple equation of the type:

a. = a,(l + He). (135)

From eqgn (8) and material incompressibility one can deduce that

5 A =%
&= —iln(l~(g_!)}z_‘) (16}
and since
1 ‘\J’
In(l—\)::——\;" (17
i

then cgn (2) for hole growth becomes

Zn.,l b1 da, HE pu,, o 18
oy, (20ay) = My~ 1)} y O(d, 2. 2) (18)

where

mMmzwﬁwwmwm. (19)

2.4 Strain rate and strain hardening dependence of the vield stress
In a manncr similar to that of the previous sub-sections. if the yield stress is represented
by
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o, = oo(l + He)(1 + BE™) (20)

it can be easily verified that the differential equation for the dynamic void growth is given

20, 40, 20,8 ,
o= (i—-)—ﬂﬂﬂ(x.zu)— :,;l (4 3z — )" = ((x—=1)/2)")
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where
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Fa(x.2y) = /_4(1 U 'n(n+m)

(1= ({x=D/2)"). 22

On the other hand, if we constider a yield stress dependence of the type:

g, = go(l + th)[l +f1n (;)} 23)

we find that the dynamic pore growth process is governed by the equation

o)) = e
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- In (3(1-«‘] )13.,)1 {2+ - 9 Fila, o) = 3oy — .;{Q(a.a,z)
(24)
where
P =% 0 [' Dy _ (e e bia - ) } 25)
T (x=1)Y'n " n

2.5. Temperature dependence of the vield stress with or without simultaneous strain hardening

An aspect worth considering in the dynamic growth of voids under external stress is
the temperature increase in the material as the result of the plastic work dissipated as heat.
For materials experiencing lincar thermal softening, the yield stress dependence may be

written as
T
o, = a.,(l - ?)) (26)

where T is temperature and § can be roughly identified with the melting temperature, both
measured with respect to a reference value. It is worth noting that in this situation the
plastic deformation is unstable and may give rise eventually to plastic strain localization in
the presence of perturbations, Bai (1982). However, this case retains its interest because
there is a delay between the instant of reaching the instability condition and that when
strain localization is achieved, Grady and Kipp (1987). Under extremely high strain rate
loading, this delay may be an important fraction of the total loading time, or even longer.
Furthermore, in doing so we can isolate the thermal softening effect from other factors and
50 study it in greater depth.

SAS 29:11-8
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We now consider the case of a non-conducting material. In this case, we can estimate
the local temperature increment from the expression :

T
dT = ’;"(S<n— ~)da (27

where C is the specific heat and « is the coefficient of Taylor and Quinney (1934), a value
of about 0.9 for metals. On integrating this latter equation from the initial state, we obtain

(‘ B 9 = (ro/r)™ (28)

/

where
‘_3’510_ 29
/.—3PC9. (29)
Since
i - LTS \"‘
(I—=x)'=14Y (=1 A(/L—-l)...().~n+!)r;, (30)
; !
we can write
T 1(1)" ]
- )= — "»—~ (A=), . (A— 3
(I 0) l+z( 1) (=1} AA=1) . (4 n+l)n!RM &1))

where eqns (10) and (28) are taken into account, and finally the ditferential equation
governing the dynamic pore growth problem comes to be

20 & 20 pu, o
g— »~3"' In (oz“:-:’l) L Fx ) = ,{( 2y — ’ ,,3 Qd, d, ) (32)

where

Futa) = 3 (= 1" 2(A—1).. (».~n+)—'—{(“ %)n(l——((a—l/a))} (33)

ntn | (

Now, consider yielding which exhibits simultaneously strain hardening and thermal
softening, of the type

ac=00(l+H£)<l-—g). (34)

For a non-conducting material the temperature increase is obtained from the equation

T odT " Koy

o (1=T16) ~ )y pC (L HHE) e (33)
or

(1 _ g) = (ro/r) M= HICGm (36)

and the yielding equation (34) can be written as a function of R, as shown in the Appendix,
as:
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Using this expression, the governing equation of the dynamic void growth process
becomes

26,

x 20,4 pa;
73 In (a-—l)— Tf"s(ﬁ!‘%) = WQ(* d,a) (38)
where
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p=1 gmi p=t gml r=} q+

Fo(a.ay) =

In the above expression, ¢ is the material porosity defined as ¢ = (a/b)’. We remark that ¢
is related to the distention factor « by the expression & = (x— 1)/a.
Finally, if a yield stress dependence of the type

ac=ao(l+H£)(l+ﬁln(£))(l~g> (40)

is assumed, then the solution of the coupled thermo-mechanical problem depends on the
loading history and has to be solved by numerical methods.

3. NUMERICAL ANALYSIS

In this section, we analyse numerically the analytical formulation previously developed,
assuming a material subjected to a linearly increasing hydrostatic stress and determining
the influence of the different yielding functions on dynamic pore growth. So, we consider
now the influence of a viscous term, the strain hardening and the thermal softening effects.

For this analysis we have chosen the parameters g, = 200 MPa, C=902 J kg™' K™!
and p = 2700 kg m ™, which may correspond to an aluminium. Some simulations for a
copper-like material, with g4 = 150 MPa C=385Jkg ' K 'and p =8930 kg m~?, were
also performed. A value of @, = 10~ ® m for the initial pore size was selected, as well as an
initial porosity of &, = 10™*, where porosity is defined as ¢ = (x— 1)/a. Unless otherwise
indicated, a hydrostatic loading pulse increasing at a constant rate of 10 GPa us™' was
assumed.

The evolution of porosity with time was obtained from the numerical integration of
the corresponding dynamic void growth equation. [t is well known that coalescence of
cavities takes place at a given instant as voids grow. In this simulation, and just to fix ideas,
it is assumed that coalescence takes place by direct impingement of the cavities when the
distance between cavities equals the void radius. This implies that the corresponding
porosity at the instant of coalescence equals & = 0.30. In consequence the dynamic tensile
strength is defined as the hydrostatic stress acting on the material for a porosity value of
¢ = 0.30. So the numerical analyses are made up to the moment when a value of { = 0.30
is reached. The selection of this critical porosity value agrees with experimental measure-
ments of void volume fraction at the fracture plane in spall experiments performed in
copper, Johnson (1981). Moreover, Grady (1988) has suggested for ductile fracture that
coalescence might begin for a void volume fraction of the same order of magnitude of that
here selected.
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Fig. 2. Dynamic porosity growth curves for a perfectly plastic aluminium-like material,
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Fag. 3 Influence of viscosity in the dynamic growth of cavitics.

Figure 2 presents the stress-porosity curves for a perfectly plastic behaviour of the
aluminium-like material subjected to loading rates of 1.0 GPa ps ', 10 GPa us™ ' and
100 GPa s .

Figure 3 is for the case of the aluminium-like material with the viscous resistance term
given by eqn (7) with m = 0.5 and for different values of parameter B. Parameter B was
estimated as B = D/Ey, with D = 3.0 and ¢, = 10° s ", 10°s 'and 107 s ' alternatively,
giving different degrees of strain rate sensitivity in the high strain rate range (6 > 10*s ™).
This figure shows that the strain rate sensitivity of materials in the high strain rate range
has a remarkable influence on the tensile strength of the material.

The influence of strain hardening on dynamic void growth is illustrated in Fig. 4; Fig.
44 shows the results obtained for the aluminium-like material, where a hardening parameter
H =1 was chosen, whereas Fig. 4b shows the results for the copper-like material, where
values of H = 5.0 and H = 10.0 were taken.

Figure 5 illustrates the influence of thermal softening on the porosity curves for the
aluminum-like material by taking ¢ = 800 K and » = 0.9. Qualitatively similar results were
obtained for copper.

4. DISCUSSION

Material viscosity, especially in the high strain-rate range, has a great influence on the
dynamic tensile strength of aluminium as shown in the previous section. This is a useful
result since the practical determination of material properties at such high strain rates is
not an easy task. Strain hardening also has an important influence though less marked than
the previous one. In particular, for aluminium it has an effect which can be disregarded in
practice, whereas for greater amounts of work hardening, such as that exhibited by copper,
the degree of influcnce on the dynamic tensile strength is greater.
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Fig. 5. Influence of thermal softening in the case of the aluminium-like material,

Thermal softening by itself has a negligible effect on tensile strength under high loading
rates, for both copper and aluminium. This result is based on the assumption of a vanishing
value of thermal conductivity, but it is unlikely that the consideration of a finite conductivity
modifies this conclusion. The average temperature increase within the zone of influence of
a spherical cavity for a non-conducting material is given by, Cortés (1989):

S_gz = Téfi(- ! (2—ag)" AA=1)...(A—n+1) c
]

(a—1y nl - @n

where
¢y =§In(1/%)
{—é"

n—1"

Cp ==

{n> 1) {42)
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On the other hand. it is easyv to verify that for a material with infinite thermal con-
ductivity the corresponding temperature increase will be (Cortés, 1989)

T (1‘)‘.1)1. S:;ll»,’J

i ) G (43

For an initial porosity of 5, = 10 "* and a final porosity of £ = 0.1, eqn (41) gives an
average temperature increase of only 1.64% of the melting temperature of aluminium, and
about 0.70% of the melting temperature tor copper. These results reflect the limited influence
of the thermal softening effect on the dynamic growth of microvoids. Moreover, for
aluminium. for instance, and for a porosity value of & = 0.1, it can be shown that the
temperature in the inner wall of the void (r = a) will be about the melting temperature ; at
r = 1.05q. the temperature increase will be about only 12% of the melting temperature,
whereas at r = b = 2,154, the temperature increase is less than about 1% of the melting
temperature. Consequently, although the temperature increase in the inner wall of the cavity
may be a substantial fraction of the melting temperature of the material as previously noted
by Johnson (1981)., such an effect is so localized that it has a negligible influence on the
global strength of the material. Tn fact, the geometric softening term 20,3 In (1/¢) has a
much more pronounced softening effect than the thermal effect. On the other hand, for
Eo=10 "and & =0.1. cqn (43) gives a temperature increase under the assumption of
infinite thermal conductivity of about 2.19% of the melting temperature for aluminium and
0.94% for copper. So it is unlikely that the consideration of thermal conductivity cffects in
the analysis modities the above conclusion.

5. CONCLUSIONS

(1) A modcel for dynamic growth of microvoids under hydrosatic stress, based on a previous
one introduced by Carroll and Holt (1972) for shrinking pores, was extended to take
into account the effect of material viscosity, strain hardening and thermal softening in
the tensile fracture behaviour of ductile materials.

(2) Thermal softening by itself was found to have a negligible influence on dynamic tensile
strength i the case of aluminium and copper-like materials, due to an excessively
localized heat generation near the surtace of the voids.

(3) Explicit expressions which allow to quantify the effects of material rate dependence tn
the high strain rate range (of the power law and logarithmic types) and lincar strain
hardening in the dynamic growth of microvoids have been presented. Such factors may
have an important effect on the dynamic growth of microvoids as reflected in the values
of dynamic tensile strengths.
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APPENDIX
Equation (36) can also be expressed as:
(“@:S"“M’"” (Al)
where
S=(raint =1 HZ-_T%"ET_ (A2)

After series expansion of the linear hardening term appearing inegn (34), we can write

JH o Ax—a2,)" 1

3 & (x-1)" nR™ (Ah

[+ He =14

The thermal softening teem of egn (34) can be expressed, through cqns (A1) and (A2}, as the product of the
following two series

(x ~1y)"

(x—-D)"ntR™ (A9)

ST EM-DTAA - A kD
i

and

. "
(QIELRLUL LRSI (T "'?'l’

b (x— l‘)’r'rt! R

{AS)

In this latter equation, the o, correspond to the nth dertvatives of the left-hand-side computed for
X= ((x=2,)/{x~1)),R" = 0. Defining £, (.x) as the left-hand-side of eqn (AS), and A(x) as

hix) = — ‘in {in (1 ‘_\.”3 "

it becomes clear that

1.1 (\) - dun' (A‘])

Then, by successive dertvation, we deduce that

=Sy = Lk
fy=F = fily+ ik
= fo= i+ fibo vy o+ ik

. = (n-2)!
v =fo= ;\:‘ FARY. “;’a“_—i_"j}; (A8)

In the above derivatives, ki, correspond to the kth derivative of function #, cvaluated for x = 0. Such
dertvatives may be evaluated in a recursive manner as

2ib,

=ih, ~ (i—~ )", Ix,=—3 (A9)

by =0, b

+ b

Similarly. the £, correspond to the k — lth derivative of function f,{x) computed at x = 0. and sincea, ., = /.,
from the recursive manner expressed by eqns (A8}, all of the required «, can be calculated.
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Finally, by defiming :

2H _(1‘1“"

A=Y Eh

{2—24)"

8.[ = (~1) A(A'—”u.(Ad-ni"’m

(3~24)"

R iy s

we can rewrite eqn {34} as
H ' x é l x x x 1
s =0 {1+ Dgm+ L L Engmmat L L L G grmrees
aml p=l gmi ral gw) r=i
where
D, =A,+8,+C,
E,=A8+8,C +C,A4,
Goe = A, 8,C..

(A1D)

(ALl

(Al2)



